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Introduction

The following study concentrates on the interplay between
secondary and tertiary structure and how to correct insuffi-
cient secondary structure prediction for fold prediction.

Many different approaches to predict secondary struc-
ture have been investigated, ranging, for instance, from
amino acid properties [1] to deriving propensities from
aligned structures [2] and from different stereochemical
methods [3] to neural networks.[4] Nevertheless, secondary
structure predictions may still contain a considerable frac-
tion of errors.[4] In the present study we investigated whether

and to what extent (1) a refined combination of several sec-
ondary structure prediction methods could correct
mispredictions, (2) the mispredictions could be corrected
during protein folding simulation applying a genetic algo-
rithm or (3) by exploiting information [5] from experimen-
tal data.

The genetic algorithm used here as the tertiary fold pre-
diction method is a robust searching algorithm which per-
forms well on combinatorially hard problems.[6] Applying
it to protein structure prediction [7] we predicted first heli-
cal proteins (RMSD to observed around 6 Ångstrœms [8]).
Further, starting from sequence and secondary structure in-
formation (using secondary structure assignments accord-
ing to DSSP [9]) the fold for 19 different protein topologies
was successfully delineated (proteins less than 100 amino
acids in length, with no more than eight secondary structure
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elements, RMSD around 4.5-5.5 Ångstrœms on average).[10]
Fold prediction and other applications of the genetic algo-
rithm for protein structure analysis are also being intensely
investigated by other groups [reviewed in 11-13] with the
use of blind tests,[14] analysis of small helical and strand
containing proteins,[15] peptide library assemblies for fold
prediction [16] and simplified general models.[17]

Regarding the third step investigated here, the exploita-
tion of experimental data for prediction refinement, fold pre-
diction by the genetic algorithm can easily incorporate ex-
perimental information as additional fitness criteria.[18] Fur-
thermore, theoretical estimates show [19] that the addition
of experimental information should be a powerful corrective
for protein topology predictions. We illustrate and apply this
here to the problem of mispredicted secondary structure.

Materials and methods

Test structures

21 proteins (1IFM, 1PNH, 1PPT, 2OVO, 1MLI, 1EGL,
1HMD, 1GPT, 1EPR, 1DFN, 2CCY, 1CRO, 1CRN, 1TCG,
2CRD, 2BUS, 7PTI, 1BBI, 256B, 1ATX, 2GB1) with differ-
ent topology and known three dimensional structure served
as test cases to compare different secondary structure predic-
tion programs.

Table 1 Fitness function criteria

criteria des[a] term specific parameters

constant[a] C weightC adjusted to 10% negative fitness
in the first generation

clash[b] cl weightcl• Σ overlap weightcl   = -500

secondary structure(ss):
pf[c] weightpf•(structural preference) weightpf   =  +12
co[c] weightco•cooperativity weightco   =  +12

tertiary structure:
global scatter[a]

gs weightgs•scatter weightgs   =  -24
hydrophobic scatter[a]

hs weighths•hydrophobic distribution weighths   =  -19
hydrophobic residues include
Phe,Tyr, Met,Cys, Ile,Leu,Val,Trp

beta-strand criteria[d]:
hydrogen hyd weighthyd•hydrogen weighthyd = + 15
bond bond bondcount + betapair + bondstrand +

revturn + 2•bondsheet
sheetdir sh weightsh•sheetdir weightsh   =  + 6;

within 66o, reward = +1;
within 35o, additional reward = +6

[a] The term "des" refers to the abbreviated designation for
the criteria involved. A positive constant (C) was added,
"gs" denotes the scatter of all residues, "hs" the scatter of
all hydrophobic residues around the center of mass. The
total fitness was the sum of all fitness terms listed using
the optimised weights for each term [8,10] indicated on
the right.

[b] Cα-Cα (closest distance 3.8 Å, pearl necklace model [28])
and any other mainchain atom overlaps (closest distance
2.47 Å [22]) were counted as clashes (cl).

[c] Structural preference (pf) rewards all residue conforma-
tions encoded in a bit string which agree with the second-
ary structure (known or predicted) used in the trial.
Cooperativity (co) yields a reward for any two consecu-
tive residues in the same dihedral conformation.

[d] hydrogenbonds (hyd) were counted, and specific param-
eters listed on the right judged whether strands or sheets
were formed; suitable directions of the hydrogenbonds
were rewarded (sh).
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Secondary structure prediction

Different secondary structure prediction programs were run
using original executables from the authors (either available
locally to EMBL by license or freely on the Web). Thus, a
range of different strategies for secondary structure predic-
tion could be compared: Pure stereochemical considerations
are utilised for secondary structure prediction in the algo-
rithm developed by Ptitsyn and Finkelstein.[3] Profile based

neural networks are used by Rost.[20] Frishman and Argos
[21] utilise local pairwise alignment of the sequence to be
predicted with each related sequence rather than utilisation
of multiple alignment. Metha et al. [1] use residue exchange
weight matrices relying only on amino acid substitutions of
structurally related proteins. Levin’s program [2] assigns sec-
ondary structure comparing the blosum 62 similarity scores
of  best matching fragments in a database of known struc-
tures. The output for each secondary structure prediction pro-

Table 2 Comparing different standard secondary structure predictions.

(a) performance of standard secondary structure predictions:

Testsequence 1: 1ifm GVIDTSAVESAITDGEGDMKAIGGYIVGALVILAVAGLIYSMLRKA
observed secondary structure  aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Ptitsyn and Finkelstein [3]                aaaaaaa  bbbbbbbbb aaaaaaaaaa
Mehta et al. [1] bbbbb aaaaaa          bbbbbbbbbbbbbbbbbbbb
Frishman und Argos  [21]     aaaaaaa                aaaaaaaaaaaaaaaa
Rost  [20]    bb  bbb bbbb         bbbaaaaaaaaaaaaaaaa
Levin [2]  bb  aaaaabb      aaaa  aaaaaaaaaaaaaaaaaaaaa

Testsequence 2: 1pnh TVCNLRRCQLSCRSLGLLGKCIGVKCECVKH
observed secondary structure     aaaaaaaaa    bbbbb  bbbbb
Ptitsyn and Finkelstein [3]  aaaaaaa      aaaaaaa bbbbbbb
Mehta et al. [1] bbbb  aaaaa     aaaaaaaaaaaa
Frishman und Argos [21]       aaaaaa
Rost  [20]                   bbbb  bbbbb
Levin [2]     aaaaaaaaaaa     bbbb  bbb

(b) combined prediction example:

Testsequence 3: 1ppt GPSQPTYPGDDAPVEDLIRFYDNLQQYLNVVTRHRY
observed secondary structure              aaaaaaaaaaaaaaaaaaa
(36 residues)
combined prediction schemes:

            aaaaaaaaaaaaaaaaaaa       5  (33)
            aaaaaaaaaaaaaaaaaaaa      6  (34)
             aaaaaaaaaaaaaaaaaa      12  (35)
            aaaaaaaaaaaaaaaaaaa      24  (33)
            aaaaaaaaaaaaaaaaaaa      25  (33)
            aaaaaaaaaaaaaaaaaaa      40  (33)
            aaaaaaaaaaaaaaaaaaa      42  (33)

Ptitsyn and Finkelstein [3]           aaaaaaaaaaaaaaaaaaaaaaa
Mehta et al. [1]                aaaaaaaaaaabbbbbbb
Frishman und Argos  [21]             aaaaaaaaaaaaaaaaaaa
Rost  [20]              aaaaaaaaaaaaaaaaaa
Levin [2]             aaaaaaaaaaaaaaaaaaaa

Predictions by Ptitsyn and Finkelstein [3], by Mehta et al.
[1], by Frishman and Argos [21], by Rost [20] and by Levin
[2] were compared. The top line denotes in each example the
brookhaven file structure and amino acid sequence, followed
by the observed secondary structure (a helix, b strand). Next
there are given the secondary structure assignments accord-

ing to the prediction programs (a helix, b strand). Table 2(b)
has the same format as in (a), but several combination schemes
are investigated (listed on the right; the first number indi-
cates the scheme tested; the second number in brackets shows
how many residues from the total of 36 residues in the exam-
ple are correctly predicted).
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gram on the complete test set of proteins with known three
dimensional structure was collected and stored. Applying
custom written programs in VAX Pascal that could read the
prediction output from the different programs, the perform-
ance of each secondary structure prediction program was
noted as well as the performance of various combinations
calculated. Further, individual prediction program combina-
tions for helical regions, strand regions and turn regions were
investigated. The following combinations of secondary struc-
ture prediction programs were investigated and compared to
each other: Different ways to achieve consensus predictions
(scheme 1 and 2); taking one of the two best overall second-
ary structure prediction programs and trying to improve this
further by an additional prediction for helical regions (scheme
3 and 4); combine the three best prediction programs to make
conservative, careful predictions (scheme 5) and then try to
improve unassigned regions (schemes 6-8); the five standard
prediction programs investigated (scheme 9-13); combina-
tions of two predictions (scheme 14-19); combinations of three
predictions (scheme 20-29); combinations of three predic-
tions, further improved in strand regions by additional pre-
diction (scheme 30-39). Apply best helix and best strand spe-
cific prediction combinations (scheme 40). Apply only best
strand and best helix prediction program (scheme 41). Ex-

tend too small strand regions from scheme 40 (scheme 42).
The high probability regions derived from one individual pre-
diction scheme predicted then nuclei of secondary structure
deemed to be certain which were kept fixed during the simu-
lation.

Protein folding simulations

Folding simulations [8,10] implemented basic protein build-
ing principles [22] as fitness criteria in a genetic algorithm.
The protein main chain (C, O, N, and Cα) was modelled.
Different Φ and Ψ dihedral values were taken for each resi-
due from a set of seven possible standard conformations, rep-
resentative of frequently populated regions in known tertiary
structures.[23]

Side chain atoms were not represented explicitly. Instead
different amino acid properties are implicitly taken into ac-
count by some of the fitness criteria (Table 1): The second-
ary structure propensity of amino acids for helix, strand or
coil regions is taken into account by the secondary structure
prediction used as starting information, as well as by the co-
operative growth and preference terms for new or already
present secondary structure applied in the fitness function

Table 3a Different combinatorial schemes for secondary structure prediction tested – First strategies

Consensus predictions
scheme 1: Accept  first helix predictions, next coil predictions from the consensus, believe strands only when there is a

clear majority.
scheme 2: Accept only clear majorities, otherwise leave region coil

Combine only the best prediction programs
scheme 3: Accept predictions by PHD (best secondary structure prediction program in the comparison), but change strand

regions to helices if the region is predicted helical by Alb (seems to be a good helix prediction for small proteins)
scheme 4: Accept predictions by predator, but change strand regions to helices if the region is predicted helical by Alb

(good helix prediction for small proteins)

Improve a good triple combination
scheme 5: combine PHD, predator and simpa; accept all predictions where two of them agree.
scheme 6: like scheme 5 but if PHD and predator assign no helix or strand region fill in secondary structure predicted by

simpa.
scheme7: like scheme 5 but if predator and simpa assign no helix or strand region fill in secondary structure predicted by

PHD.
scheme 8: like scheme 5 but if PHD and simpa assign no helix or strand region fill in secondary structure predicted by

predator.

Use one program alone
scheme 9: Use the prediction by Alb and assign accordingly helix or strand regions.
scheme 10: Use the prediction by sspred and assign accordingly helix or strand regions.
scheme 11: Use the prediction by predator and assign accordingly helix or strand regions.
scheme 12: Use the prediction by PHD and assign accordingly helix or strand regions.
scheme 13: Use the prediction by simpa and assign accordingly helix or strand regions.

The different secondary structure prediction programs used are abbreviated as follows: Alb [3], sspred [1], predator [21],
PHD [20] and simpa [2]. They are combined applying the rules listed.
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during the genetic algorithm simulation. Furthermore, hy-
drophobic amino acids (Phe, Tyr, Met, Cys, Ile, Leu, Val,
Trp) are packed together tighter and more central to the pro-
tein core than other amino acids.

The standard conformations (3 bits encoding one stand-
ard conformation) of all residues along the amino acid se-
quence were successively collected together and decoded from
a long bit string (a „chromosome“). Starting from a popula-
tion of random bit strings, the quality of each encoded struc-
ture was judged by a fitness function composed of rewards
and penalties. The total fitness (Table 1) measured the qual-
ity of the structure encoded by an individual bit string. This
is the sum of the general fitness terms (criteria 1-4) and the
beta-strand fitness terms (criterion 5):

1) the total scatter of all (n) residue Cα-atoms (res), each(j)
with coordinates (x,y,z) around their common centre of mass
(Cm),

∑ ∑
= =

−
n

i zyxj

ijij Cmres
1 ,,

2)( (1)

2) distribution of hydrophobic residues only (M, I, L, V,
Y, C, F and W) around the centre of mass (same centre as in
1);

3) mainchain van-der-Waals atom overlaps;
4) conformational states that agree with the secondary

structure (either known or predicted) for a given subsequence
and

5) the selection for the formation and direction of hydro-
gen bonds in beta-strands and beta-sheets and the formation
of reverse turns in beta-hairpins (Table 1).

Helix and strand regions predicted with high accuracy (by
an optimised choice or combination of secondary structure
programs; see methods for secondary structure prediction)
were kept fixed in an appropriate standard conformation [23]
during the simulation. The genetic algorithm kept these nu-
clei of secondary structure elements fixed, but operated freely
on all other residues (including extension and deletion of new
elements and extending or limiting the regions deemed cer-
tain). These criteria are sufficient to predict (RMSD 4-6
Ångstrœms between observed and predicted Cα-atoms) the
mainchain topology of all-helical folds [8] starting from se-
quence and secondary structure prediction without any ex-
perimental information. Further, 19 proteins, (most with fewer
than 100 amino acids) and with different topologies and sec-
ondary structural types, could be similarly predicted with
sequence information and known secondary structure.[10]
Parameters and suitable weights were determined empirically

Table 3b Different combinatorial schemes for secondary structure prediction tested – Systematic permutations

Combine two programs
scheme 14: Use the prediction by Alb (conservative in predictions for helices and strands), if coil is assigned, fill in the coil

regions additional helices or strands regions predicted by sspred.
scheme 15: Use the prediction by Alb (conservative in predictions for helices and strands), if coil is assigned, fill in the coil

regions additional helices or strands regions predicted by simpa
scheme 16: Use the prediction by sspred, if coil is assigned, fill in the coil regions additional helices or strands regions

predicted by Alb.
scheme 17: Use the prediction by sspred, if coil is assigned, fill in the coil regions additional helices or strands regions

predicted by simpa.
scheme 18: Use the prediction by simpa, if coil is assigned, fill in the coil regions additional helices or strands regions

predicted by sspred.
scheme 19: Use the prediction by simpa, if coil is assigned, fill in the coil regions additional helices or strands regions

predicted by Alb.

Combine three prediction programs
scheme 20: Where at least two of the predictions by Alb, sspred and predator agree, assign helix or strand regions.
scheme 21: Where at least two of the predictions by Alb, sspred and PHD agree, assign helix or strand regions.
scheme 22: Where at least two of the predictions by Alb, sspred and simpa agree, assign helix or strand regions.
scheme 23: Where at least two of the predictions by Alb, predator and PHD agree, assign helix or strand regions.
scheme 24: Where at least two of the predictions by Alb, predator and simpa agree, assign helix or strand regions.
scheme 25: Where at least two of the predictions by Alb, PHD and simpa agree, assign helix or strand regions.
scheme 26: Where at least two of the predictions by sspred, predator and PHD agree, assign helix or strand regions.
scheme 27: Where at least two of the predictions by sspred, predator and simpa agree, assign helix or strand regions.
scheme 28: Where at least two of the predictions by sspred, PHD and simpa agree, assign helix or strand regions.
scheme 29: Where at least two of the predictions by predator, PHD and simpa agree, assign helix or strand regions.

The different secondary structure prediction programs used are abbreviated as follows: Alb [3], sspred [1], predator [21],
PHD [20] and simpa [2]. They are combined applying the rules listed.
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by many simulations on these different protein topologies.
Different implementations and weights for various fitness
function criteria were studied to optimise the structures se-
lected during the genetic algorithm simulation.[8,10]

High quality bit strings (after a random start) were se-
lected preferentially as parents and mutated (1 bit per string
per generation was mutated on average, choosing a random
position on the string) and recombined through cross-over to
yield the next parental generation of folds (probability of re-
combination was 0.2 per bit string per generation and occured
at exactly one equivalent site chosen at one random bit on
each of the parental chromosome pairs). A positive constant
kept the population of prediction trials richer, since low fit-
ness individuals may also survive (C in Table 1). Simulations
were run over many generations to allow convergence (the
product of population and  generation equals 4 x 105, corre-
sponding to a processing time for one simulation run of 20
minutes on a VAX 7620 for a 46-residue protein). At least ten

simulations with different random starting populations, found
to be sufficient to achieve good predictions in various test
structures, were investigated for each fold prediction. The
structure with the highest fitness value from the trials was
taken as that predicted.

Results

Small proteins with known three dimensional structure were
analyzed with respect to accuracy of secondary structure pre-
diction and genetic algorithm based fold prediction. Two dif-
ferent strategies to correct mispredictions from incorrect sec-
ondary structure prediction were examined. The first investi-
gated different combinations of secondary structure predic-
tion programs, the second strategy applied folding simula-
tions.  Neither required experimental data.

Table 3c Different combinatorial schemes for secondary structure prediction tested - Further refinement

Predict helices by three predictions, strands by PHD
scheme 30: Where at least two of the predictions by Alb, sspred and predator agree, assign helix regions. Strand regions are

assigned by PHD, over-ruling the first rule.
scheme 31: Where at least two of the predictions by Alb, sspred and PHD agree, assign helix regions. Strand regions are

assigned by PHD, over-ruling the first rule.
scheme 32: Where at least two of the predictions by Alb, sspred and and simpa agree, assign helix regions. Strand regions are

assigned by PHD, over-ruling the first rule.
scheme 33: Where at least two of the predictions by Alb, predator and PHD agree, assign helix regions. Strand regions are

assigned by PHD, over-ruling the first rule.
scheme 34: Where at least two of the predictions by Alb, predator and simpa agree, assign helix regions. Strand regions are

assigned by PHD, over-ruling the first rule.
scheme 35: Where at least two of the predictions by Alb, PHD and simpa agree, assign helix regions. Strand regions are

assigned by PHD, over-ruling the first rule.
scheme 36: Where at least two of the predictions by sspred, predator and PHD agree, assign helix regions. Strand regions are

assigned by PHD, over-ruling the first rule.
scheme 37: Where at least two of the predictions by sspred, predator and simpa agree, assign helix regions. Strand regions

are assigned by PHD, over-ruling the first rule.
scheme 38: Where at least two of the predictions by sspred, PHD and simpa agree, assign helix regions. Strand regions are

assigned by PHD, over-ruling the first rule.
scheme 39: Where at least two of the predictions by Alb, PHD and simpa agree, assign helix regions. Strand regions are

assigned by PHD, over-ruling the first rule.

Refining the best combinations
scheme 40: Rule for strand prediction: Where at least two of the predictions by predator, PHD and simpa agree, assign strand

regions. Rule for helix regions: Where at least two of the predictions by Alb, predator and simpa agree, assign
helix regions, over-ruling the first rule.

scheme 41: Strand regions are assigned by PHD, Alb assigns helix regions, over-ruling the first rule.
scheme 42: Rule for strand prediction: Where at least two of the predictions by predator, PHD and simpa agree, assign strand

regions. Rule for helix regions: Where at least two of the predictions by Alb, predator and simpa agree, assign
helix regions, over-ruling the first rule. Single residues determined by these two rules to be in strand conforma-
tion and found in a coil region are extended by two further C-terminal strand residues; two strand residues found
in a coil region are extended by one further C-terminal strand residue.

The different secondary structure prediction programs used are abbreviated as follows: Alb [3], sspred [1], predator [21],
PHD [20] and simpa [2]. They are combined applying the rules listed.
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Testing accuracy of different secondary structure
predictions

Table 2 shows example files of proteins with known three
dimensional structure and different predictions of their sec-
ondary structure. Five standard secondary structure predic-
tions were systematically compared on 21 proteins with dif-
ferent topology and known structure: The prediction algo-
rithms by Ptitsyn and Finkelstein [3], by Metha et al. [1], by
Frishman and Argos [21], by Rost [20] and by Levin [2]. As
each of these has a different method to determine secondary
structure (see Materials and Methods) they yield different
predictions on the same protein (Table 2a).

Next we investigated whether combinations would improve
the overall secondary structure prediction accuracy. An ex-
ample comparing several different combinations is shown in
Table 2b. We then investigated in detail different combina-
tions of secondary structure prediction programs and deci-
sion rules to optimise the resulting combined prediction (Ta-
ble 3a-3c). Note that for further improvement of these sec-
ondary structure predictions by the genetic algorithm simu-

lations (next part of the results) more conservative estimates
are valuable: They predict only the sure, central regions for
the secondary structure elements. Such nucleus regions are
then kept fixed during the genetic algorithm simulation (see
Materials and methods). However, the genetic algorithm may
extend or limit these. Further, the genetic algorithm may  fill
in new secondary structure elements or introduce and extend
coil regions and modify or delete them again during the simu-
lation in all other parts of the protein.

The various combinations tested followed a systematic
exploration of the possibilities to derive an accurate predic-
tion. A first set of rules tried to achieve a consensus among
all predictions. Problems arise only when their is no clear
majority and we investigated the outcome of a preference for
helix prediction (scheme 1) as well as the outcome of a con-
servative coil estimate (scheme 2). The next two schemes
which test the opposite strategy, rely only on the best predic-
tion programs, i.e. predator [21] and PHD [20] for strands
and Alb [3] for helices. All the following schemes (Table 3a-
c) persue intermediate strategies (see Materials and meth-
ods), trying to combine both the advantages from consensus
predictions and the advantages of a program that performs
particularly well on some type of secondary structure ele-
ment. Before a further scheme was introduced and tested,
the performance of the previous combinations was noted so

Scheme correctly not wrongly net result
assigned assigned assigned

5 960 232 94 866
6 967 182 137 830
12 927 203 156 771
23 954 251 81 873
24 955 243 88 867
25 929 244 113 816
39 973 184 129 844
40 961 235 90 871
42 964 225 97 867

Table 4a The best secondary
structure prediction combina-
tions – Single residue scores
(three state prediction, helix,
strand, coil) [a]

[a] A total of 1286 residues was analyzed. Predictions by
Ptitsyn and Finkelstein [3], by Mehta et al. [1], by Frishman
and Argos [21], by Rost[22] and by Levin [2] are compared
and combined, the rules associated with each scheme are listed
in Table 3. The performance and advantages of the specific
schemes shown compared to all other schemes is explained
in the text. The net result indicates correctly assigned resi-
dues (as strand or helical state) minus wrongly assigned resi-
dues (helix  state instead of strand conformation or strand
conformation instead of helix state). In all not assigned re-
gions random coil state is assumed

secondary present crashed found wrong
structure

helices   42     4   31     4
strands   44     4   26     7

Table 4b The best secondary
structure prediction combina-
tions – Analyzing prediction
of secondary structure ele-
ments (e.g. scheme 42) [b]

[b] Prediction schemes as listed in Table 3. Mispredictions
of secondary structure elements can either break ("crash")
the correct secondary structure element (e.g. if a strand is
predicted instead of a helix in the observed structure) or
misassign ("wrong") structure in coil regions (e.g. a helix is
assigned though there is a coil region in the known three
dimensional structure here).
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as to be available for further improvement. Thus the perform-
ance of the best strand predictor PHD could be outperformed
by a careful combination of three secondary structure pre-
diction programs. It turned out that the sequence of second-
ary structure assignment is important, i.e. whether strand as-
signment or helix assignment is done last, overruling in some
regions the assignments made before. An extension rule for
too short elements proved to be important for maximum per-
formance (scheme 42).

A further point was also considered: The secondary struc-
ture prediction accuracy for the different combinations (Ta-
ble 4) depends on how accuracy of prediction for secondary
structure is defined. Several ways to measure prediction ac-
curacy are shown and were calculated for all of the combina-
tions tested: Per residue prediction (4a), prediction of sec-
ondary elements (4b), and different punishment weights if a
secondary structure element is misassigned in coil regions
(4c). For any of the criteria investigated, a suitable combina-
tion of predictions performs better than any of the standard
prediction programs alone (4d; the standard prediction pro-
grams are the schemes 9-13 in Table 3a). Table 4a illustrates
that all the combinations of secondary structure prediction
programs shown achieve better prediction accuracy for sin-
gle residues than a single secondary structure program. This
is the case both for the amount of correctly predicted resi-

dues and for the net result after subtracting wrong assigned
residues (the results for the standard secondary structure pro-
grams are listed in Table 4d). Several schemes are compared:
The current best neural network predictor for secondary struc-
ture (scheme 12; by Rost [20]). The best combined predic-
tion scheme maximising correctly assigned single residue
states is scheme 39. However, another combined scheme (23)
achieves the highest score if wrongly assigned states (e.g.
predicting helix where a strand is present in the observed
structure) are taken into account and subtracted from the score
(„net result“, Table 4a).

Good prediction schemes for whole secondary structure
elements perform only slightly less well on single residue
predictions and still better on this task than the uncombined
prediction programs do. Compared are the two schemes that
have the strand rule (scheme 24) and the helix rule (scheme
5), which are combined in the scheme 42 (also shown), as
well as the somewhat weaker performance of two other re-
lated schemes (scheme 6 and scheme 25). The performance
on single residue prediction for the best prediction program

Sub1[a] Sub2[b]

the best helixpredictor is the prediction: 40 40
with the net value being: 26 22

the best betapredictor is the prediction: 12 42
with the net value being: 16 8

the best overall predictor is the prediction: 42 42
with the net value being: 38 27

[a] Every element counted equally and both types of
misprediction are subtracted once.

[b] Every element counted equally, broken (see Table 4b)
secondary structure elements are subtracted once, but wrong
predictions are substracted twice.

Table 4c The best secondary
structure prediction combina-
tions. A total of 1286 residues
was compared. The rules as-
sociated with each scheme
are listed in Table 3. "net"
indicates the total number of
correctly found secondary
structure elements  minus
those elements mispredicted.

Method correctly not wrongly net result
assigned assigned assigned

Alb 786 257 243 543
sspred 738 214 334 404
predator 929 238 119 810
PHD 927 203 156 771
simpa 923 207 156 767

[c] A total of 1286 residues was analyzed. The original pre-
diction programs Alb by Ptitsyn and Finkelstein [3], sspred
by Mehta et al. [1], predator by Frishman and Argos [21],
PHD by Rost[22] and simpa by Levin [2] are compared, the
rules associated with each scheme are listed in Table 3. The
net result indicates correctly assigned residues (as strand or
helical state) minus wrongly assigned residues (helix  state
instead of strand conformation or strand conformation in-
stead of helix state). In all not assigned regions random coil
state is assumed

Table 4d Comparison of the
best secondary structure pre-
diction combinations with
standard secondary structure
prediction programs [c]
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to predict helical secondary structure elements is also shown
(scheme 40).

The performance of the best scheme to predict secondary
structure elements (if both strands and helices are consid-
ered) is shown in detail in Table 4b (scheme 42).

Furthermore, Table 4c gives the optimal results and
schemes for several combinations of prediction programs
looking only at the strands or helices predicted or the overall

performance. The choice of the optimal strategy to predict
secondary structure elements depends in addition on how
strong mispredictions (predicting the wrong secondary struc-
ture or predicting secondary structure in loop regions) are
punished. This proved to be useful in identifying prediction
combinations optimal as input for protein folding simula-
tions.

Figure 1a Mating pheromone (1ERP); simulation result,
Cα-RMSD to observed 5.0 Å

Figure 1b Mating pheromone (1ERP); experimentally de-
termined structure; the mainchain backbone is shown in green
and the first N-terminal residue indicated in cyan

Figure 2b Scorpion toxin (1PNH); experimentally deter-
mined structure; the mainchain backbone is shown in green
and the first N-terminal residue indicated in cyan

Figure 2a Scorpion toxin (1PNH); simulation result,
Cα-RMSD to observed 5.7 Å
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Correcting mispredictions exploiting the tertiary folding
simulations and the genetic algorithm.

The next set of experiments investigated the ability of the
genetic algorithm folding simulations to correct mispredicted
secondary structure remaining after the optimisation trials
on the secondary structure predictions. The best scheme (42)
for prediction of secondary structure elements was used in
these trials. Comparing the 21 different protein topologies,
the genetic algorithm improved the accuracy of the second-
ary structure prediction during the simulations in 17 of the
21 cases. Conditions where secondary structure elements
(helices, strands) were completely overlooked by the second-
ary structure prediction became increasingly challenging the
more secondary structure elements had been missed. Here
also topology predictions could be achieved. Note, however,
that the proteins or domains to be predicted are not big (22-
121 amino acids) and have no more than six secondary struc-
ture elements, which is advantageous in the sampling of the
conformational space.

Three examples are shown, simulation result and experi-
mentally determined structure are viewed from the same per-
spective. In each case a batch of ten simulations is compared
and the fittest fold obtained is studied.

In the first example (Figure 1; 1ERP, mating pheromone)
the genetic algorithm started with a secondary structure pre-
diction where only the N-terminal helix was correctly given
and the following two helices were completely missed. The
folding simulation corrected for these missing two elements
by filling in helical regions, however, some topological error
is still left.

The next example (Figure 2; 1PNH, scorpion toxin) shows
a topology close to the experimentally observed. However,
two C-terminal strands were too small and shortened by the
secondary structure prediction scheme and had to be extended
correctly during the simulation.

In the third example (Figure 3; 1DFN, defensin) the N-
terminal strand has been completely missed by secondary
structure prediction and the following two strands were only
partly given. Nevertheless, the algorithm achieved a reason-
able topology prediction during the simulation.

There are from 1-6 secondary structure elements (most
often 4 elements) present in the 21 protein structures tested
(22-121 amino acids in length). Our results indicated that a
loss of one secondary structure element leads to slightly higher
RMSD (for values see figures), but is otherwise well toler-
ated in the topology prediction. A second missed element
only changes the topology in some cases. However, loss of
more elements in the starting information for the algorithm
leads to increasing topological error. This parameter is thus
more important than the correct placement of secondary struc-
ture elements in the genetic algorithm simulations (several
misplacements can be corrected during the simulation). Good
starting data for the genetic algorithm simulations are pro-
vided by combining secondary structure predictions in such
a way that only few secondary structures are completely
missed, a high number of correctly predicted residue states is
less important.

Applying  experimental data

A third step in the refinement of protein fold predictions ap-
plies and combines experimental data to test and refine pre-
dictions both for secondary structure and tertiary folds. Ad-
ditional information on secondary structure, distance and
structural constraints can be exploited to test, correct and
improve fold predictions.[19] This is currently used in sev-
eral application examples of our method. Our fold prediction
method has the advantage that such information can easily
be incorporated as further fitness criteria for the genetic al-
gorithm. Correcting  constraints [18,24,25] such as domain

Figure 3a Defensin (1DFN); simulation result, Cα-RMSD
to observed 5.1 Å

Figure 3b Defensin (1DFN); experimentally determined
structure; the mainchain backbone is shown in green and the
first N-terminal residue indicated in cyan
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boundaries, distance constraints from different experimental
data, including S-S bonds or antibody epitopes, but also ex-
perimental data on secondary structure elements are some-
times available and may help to achieve tertiary fold predic-
tions which can be supported by experiment. An example
shown is a domain in the large subunit of RNA polymerase II
from Drosophila (Figure 4). A more detailed picture of the
domain is desirable because the domain and its interactions
are involved in a number of steps catalyzed by the large
subunit of RNA polymerase. We are studying the interaction
of an antibody with this domain. Residues known from ex-
perimental data to interact with the antibody (single chain
antibody scFv215, [26]) are shown in cyan. The antibody
epitope as calculated by this simulation is accessible to the
antibody in accordance with the experimental data. However,
this model is currently being developed and refined incorpo-
rating feed-back and data from experiment to minimise er-
rors from secondary and tertiary structure prediction. Both
secondary structure prediction and folding simulation have
not yet assigned a specific secondary structure to this region
(depicted as loop region in the model). Further experiments
are currently investigating the secondary structure in this re-
gion in more detail. This includes epitope peptide scanning
[27] to test and refine the prediction for this binding region.
The result of the peptide scanning experiment will be used to
refine the secondary structure prediction and start the next
round of genetic algorithm simulations.

Discussion

Secondary structure prediction has only a limited accuracy,
the difficulties in considering long range interactions being
one of the major challenges.[4] The present study examines
three different strategies to minimise errors caused by sec-
ondary structure prediction in the resulting protein fold pre-
diction:

(1) We show that combining different secondary structure
programs for the prediction of secondary structure can out-
perform the results from any of the single methods. The re-
sults are quantified for different measures of secondary struc-
ture accuracy.

(2) New secondary structure elements are also created and
all elements present are optimised in length during folding
simulations with the genetic algorithm. The genetic algorithm
is able to improve the secondary structure prediction during
the folding simulation in 17 out of the 21 protein cases stud-
ied.

(3) Experimental information is shown to be important
for final refinement in application examples.

Ad (1): The accuracy of different secondary structure pre-
dictions and their combinations was examined in detail. On
their own, in this comparison neural network-based methods
(Rost’s program PHD,[20]) and Frishman and Argos [21]
achieved best results (3 state prediction). However, we note
that the programs by Levin [2], Metha et al.[1] and the old

Figure 4 Domain from the
large subunit of RNA poly-
merase II. Overall topology
prediction shown in red, heli-
ces are shown in green, anti-
body epitope is shown in
cyan. The next refinement
step will be the incorporation
of additional experimental
data studying the secondary
structure around the antibody
epitope
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stereochemical model by Ptitsyn and Finkelstein [3] perform
not much worse. Different secondary structure elements are
overlooked by different programs. As these approaches are
independent strategies and concepts, we reasoned that a con-
sensus approach might be even better and tested systemati-
cally different combinations (Table 3).

Several decision rules for combining predictions by sec-
ondary structure prediction programs can be shown to im-
prove results in comparison to the secondary structure pro-
grams on their own, at least on the test set investigated (21
different topologies from proteins with known crystal struc-
ture and 22-121 amino acids in length). An optimal input for
the genetic algorithm is a more conservative prediction (fewer
residues are assigned) which makes few wrong predictions
on secondary structure elements (scheme 42) as further sec-
ondary structure is filled in by the genetic algorithm and ex-
tended or shortened during the simulation. However, in other
applications, a maximum number of correctly assigned resi-
dues may be important and corresponding optimal strategies
are given (Table 4a). Additional investigations will analyse
the different rules and combinations described here for their
performance on larger sets of protein structures.

Ad (2): Another set of experiments examines to what ex-
tent secondary structure is optimised, and by this corrected
through the combination of all the fitness criteria used dur-
ing the genetic algorithm simulation. An improvement was
seen in 17 of the 21 protein structures tested. Three examples
with different topologies and challenges are illustrated.

This will be studied further. Additional criteria to judge
the simulation outcome will be developed to identify where
the simulation by the genetic algorithm failed to correct mis-
takes from secondary structure prediction and leads to a wrong
topology prediction. Further research will analyse additional
prediction approaches for the interplay between secondary
and tertiary structure including turn prediction accuracy and
overall fitness of predicted structures according to different
criteria.

Ad (3): In application examples, feed-back from experi-
ment is important for further refinement. The topology of the
antibody binding regions within a domain predicted by the
genetic algorithm is a simple case in point.

Outlook: The interplay between secondary structure
(mainly local interactions) and tertiary fold (mainly global
interactions) is a fascinating challenge. Considering the set
of proteins we studied, we show that further improvement of
secondary structure prediction can efficiently be achieved
either by a suitable combination of different secondary struc-
ture prediction strategies („local“) or by further refinement
applying the genetic algorithm („global“). For more and larger
protein structures as well as new application examples, ex-
ploitation of experimental data and refined structure criteria
such as additional packing rules will be applied and further
developed.
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